2019年“课程思政”示范课程申报

思政案例

案例一、数学家华罗庚学以致用,推广优选法

优化试验设计方法中的黄金分割法是我国著名数学家华罗庚提出的。华罗庚是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,他在继续从事数学理论研究的同时,他努力尝试寻找一条数学和工农业实践相结合的道路。经过一段实践,他发现数学中的统筹法和优选法是在工农业生产中能够比较普遍应用的方法,可以提高工作效率,改变工作管理面貌。于是,他一面在科技大学讲课,一面带领学生到工农业实践中去推广优选法、统筹法。
1964年初,他给毛泽东写信,表达要走与工农相结合道路的决心。同年3月18日,毛泽东亲笔回函:“诗和信已经收读。壮志凌云,可喜可贺。”他写成了《统筹方法平话及补充》、《优选法平话及其补充》,亲自带领中国科技大学师生到一些企业工厂推广和应用“双法”,为工农业生产服务。“夏去江汉斗酷暑,冬往松辽傲冰霜”。这就是他当时的生活写照。1965年毛泽东再次写信给他,祝贺和勉励他“奋发有为,不为个人而为人民服务”

案例二、均匀设计法自主提出,应用国防科研实践

均匀设计法的诞生是应国防科研实践的需求,由方开泰教授和数学家王元在1978年共同提出,是数论方法中的“伪蒙特卡罗方法”的一个应用;均匀设计法的创立和实际应用的意义,钱学森、朱光亚等老一辈科学家以其敏锐的科学目光和判断,给予了高度评价。均匀设计法着重在试验范围内考虑试验点均匀散布以求通过最少的试验来获得最多的信息,因而其试验次数比正交设计明显的减少,使均匀设计特别适合于多因素多水平的试验和系统模型完全未知的情况。例如,当试验中有m个因素,每个因素有n个水平时,如果进行全面试验,共有nm种组合,正交设计是从这些组合中挑选出n2个试验,而均匀设计是利用数论中的一致分布理论选取n个点试验,而且应用数论方法使试验点在积分范围内散布得十分均匀,并使分布点离被积函数的各种值充分接近,因此便于计算机统计建模。如某项试验影响因素有5个,水平数为10个,则全面试验次数为105次,即做十万次试验;正交设计是做102次,即做100次试验;而均匀设计只做10次,可见其优越性非常突出。七机部由于导弹设计的要求,提出了一个五因素的试验,希望每个因素的水平数要多于10 而试验总数又不超过50 ,显然优选法和正交设计都不能用,而均匀设计法则很好地解决以上试验优化的问题

案例三、正交试验在经济腾飞的应用

正交试验设计又称正交试验或正交设计,它应用一套规格化的正交表来安排试验,并用一种程序化的计算方法来分析试验结果。 正交试验法以其试验次数少、分析方法简便、重复性好、可靠性高、适用面广而得到广泛的 应用,是一种合理安排试验的一种科学方法。上世纪80年代初,中国科学院代表团在美国和日本考察后出版了《正交试验与三次设计》,在该书前言中强调:战后的日本在上世纪50年代末期到60年代末期一跃成为世界经济强国,重要的因素(技术因素)是在全日本推广使用了正交试验方法。